Kërko
 
 

Display results as :
 


Rechercher Advanced Search

Tema Fundit
» Tërësisht Shkencë e Teknologji
Tue Jan 31, 2012 5:04 pm nga Gon!

» Univers No Limit
Tue Jan 31, 2012 4:39 pm nga Gon!

» UFO - ALIEN
Tue Jan 31, 2012 4:31 pm nga Gon!

» Telefonata nga persona te vdekur
Tue Jan 31, 2012 3:20 pm nga Gon!

» Kush janë masonët? NWO?
Tue Oct 25, 2011 11:02 am nga Gon!

» Bio Shkenca
Tue Oct 25, 2011 10:13 am nga Gon!

» Tulipani numër 49 është shqiptar
Tue Oct 25, 2011 10:03 am nga Gon!

» Populli me fuqi të mbinatyrshme
Tue Oct 25, 2011 10:01 am nga Gon!

» E VËRTETA SHKENCORE MBI KOSOVËN
Mon Oct 24, 2011 10:49 am nga Gon!

Identifikohu

Harrova fjalkalimin

April 2014
MonTueWedThuFriSatSun
 123456
78910111213
14151617181920
21222324252627
282930    

Calendar Calendar

Kush është në linjë
1 Përdorues në Linjë: 0 anëtarë 0 të fshehur 1 vizitor

Asnjë

[ Shiko krejt Listen ]


Nr. Rekord i përdoruesve online ishte 15 më Mon Mar 12, 2012 10:29 pm

Degët e fizikës

Shiko temën e mëparshme Shiko temën pasuese Shko poshtë

Degët e fizikës

Mesazh  PiraTTi prej Wed Nov 17, 2010 5:26 pm

Edhe pse fizika përfshin një kategori të gjerë fenomenesh, degët themelore të fizikës janë mekanika klasike, elektromagnetizmi (i cili përfshin optikën), relativiteti, termodinamika, dhe mekanika kuantike. Seicila nga këto teori është testuar nga eksperimente të shumta dhe është provuar si e saktë në fushën e aplikimit të saj. Për shembull, mekanika klasike përshkuan në mënyrë korrekte lëvizjen e trupave në jetën e përditshme, megjithatë ajo nuk mund të aplikohet në shkallën atomike, atje ajo zëvendesohet nga mekanika kuantike, ndërsa për shpejtësi të krahasueshme me shpejtësinë e dritës, efektet relativistike bëhen më të rëndësishme. Edhe pse këto teori kuptohen shume mirë ato vazhdojnë të jenë fusha kërkimore — për shembull, një aspekt i rëndësishëm i mekanikës klasike e njohur si teoria e kaosit u zhvillua në shekullin e 20-te, tre shekuj pas formulimt origjinal të mekanikës nga Isak Njutoni (1642–1727). Teoritë themelore formojnë një bazë per studimin dhe kërkimin e temave më të specializuara.



Mekanika klasike

Një rrotull përdor parimin e avantazhit mekanik në mënyrë që një forcë e vogël mbi një distancë të madhe mund të ngrejë një ngarkesë të rëndë mbi një distancë të shkurtër.Mekanika klasike është një model fizik i forcave që veprojnë mbi trupat. Zakonisht ajo rreferohet si "mekanika Njutoniane" sipas Isak Njutonit dhe ligjeve të Njutonit. Mekanika ndahet ne statikë, e cila modelon trupat në prehje, kinematikë, e cila modelon trupat në lëvizje, dhe dinamika, e cila modelon trupat mbi të cilët aplikohen forca të ndryshme. Mekanika klasike e trupave të vazhduar dhe të deformueshëm njihet si mekanika e vazhduar, e cila vetë ndahet në mekanikën e ngurtë dhe mekanikën fluide sipas gjëndjes së lëndës që studiohet. Kjo e fundit, mekanika e lëngjeve dhe gazeve, përfshin hidrostatikën, hidrodinamikën, pneumatikën, aerodinamikën, dhe fusha të tjera. Mekanika statike merret me objekte që janë në prehje. Mekanika kinematike merret me objekte në lëvizje. Mekanika dinamike merret me lëvizjen e shkaktuar nga forcat që veprojnë mbi trupat.

Mekanika klasike jep rezultate të sakta në fushën e saj të aplikimit, e cila është eksperienca e përditshme. Ajo zëvendësohet nga mekanika relativiste për sisteme që lëvizin me shpejtësi të krahasueshme me atë të dritës, nga mekanika kuantike për sisteme në shkallë të vogël, dhe nga teoria kuantike relativiste e fushës për sisteme që kanë të dyja veçantitë e mësipërme. Megjithatë, mekanika klasike është akoma e dobishme, sepse ajo është shumë më e thjeshtë për tu aplikuar në krahasim me teoritë e tjera si dhe ka një fushë të gjerë aplikimi. Mekanika klasike mund të përdoret për të përshkruar lëvizjen e objekteve me përmasa të konsiderueshme (si topat ose makina), objekte astronomike (si planetet apo galaksitë), dhe disa objekte të caktuara mikroskopike (molekula organike).

Nje koncept i rëndësishëm në mekanikë është identifikimi i madhësive të konservuara si energjia dhe momenti, të cilat çojnë tek mekanika Lagranzhiane dhe ajo Hamiltoniane të cilat janë riformulime të ligjeve të Njutonit duke përdorur knoceptin e energjisë dhe vrullit (impulsit). Teori si mekanika e fluideve si dhe teoria kinetike e gazeve janë rezultate të aplikimit të mekanikës klasike tek sistemet mikroskopike. Rezultate të kohëve të fundit në studimin e sistemeve dinamike jolineare i kanë dhënë lindje teorisë së kaosit, studimi i sistemeve ku ndyshime të vogla shkaktojnë efekte të mbëdha. Ligji gravitacional i Njutonit, i formuluar në mekanikën klasike,shpjegoi ligjet e Keplerit mbi lëvizjen planetare si dhe ndihmoi në transformimin e mekanikës klasike në një element të rëndësishëm të revolucionit shkencor.



Elektromagnetizmi

Vijat e forcës së fushës magnetike nga një copë magneti të formuara nga pluhuri i hekurit mbi një letërElektromagnetizmi përshkruan bashkëveprimet e thërrmijave të ngarkuara, me fushat elektrike dhe magnetike. Ai ndahet ne elektrostatikë, e cila bën studimin e bashkëveprimeve midis ngarkesave në prehje, dhe elektrodinamikë, e cila studion bashkëveprimet midiss ngarkesave në lëvizje dhe rrezatimit. Teoria klasike e elektromagnetizmit është e bazuar në ligjin e forcës së Lorencit dhe tek ekuacionet e Maksuellit.

Elektrostatika është studimi i fenomeneve që lidhen me trupa të ngarkuar në prehje. Siç përshkruhet nga ligji i Kulombit, trupa të tillë aplikojnë forca mbi njëri tjetrin. Sjellja e tyre mund të analizohet nëpërmjet koncepteve të fushës elektrike që rrethon çdo trup të ngarkuar, e tillë që çdo trup i ngarkuar i vendosur në këtë fushë është subjekt i nje force në madhësi të drejtëpërdrejtë me madhësinë e ngarkesës dhe madhësinë e vlerës së fushës magnetike në atë pozicion. Nëqoftëse forca është tërheqëse apo shtytëse kjo varet nga polariteti i ngarkesës. Elektrostatika ka aplikime të shumta, që variojnë që nga analiza e fenomeneve si vetëtimat deri tek ndërtimi i motorave , siç është për shembull motori elektrostatik.

Elektrodinamika është studimi i fenomeneve që lidhen me trupa të ngarkuara në lëvizje dhe fusha elektrike dhe magnetike që ndryshojnë në kohë. Meqënëse një ngarkesë në lëvizje prodhon një fushë magnetike, elektrodinamika merret me efekte si magnetizmi, rrezatimi elektromagnetik, dhe induksioni elektromagnetik, të cilat përfshinë aplikime praktike si gjeneratori elektrik si dhe motori elektrik. Kjo pjesë e elektrodinamikës, njihet si elektrodinamika klasike, ajo u shpjegua në një mënyrë sistematike nga Xhejms Klark Maksuell. Duhet thënë se janë ekuacionet e Maksuellit ato të cilat i pershkruajnë fenomenet elektrike me një përgjithësi të madhe. Një zhvillim i mëvonshëm është elektrodinamika kuantike, e cila përfshin ligjet e teorisë kuantike në mënyrë që të shpjegojë bashkëveprimin e rrezatimit me lëndën. Diraku, Hajzenbergu, dhe Pauli ishin disa nga pionerët që formuluan hapat fillestare që çuan tek elektrodinamikën kuantike. Elektrodinamika relativiste merr parsysh korrektimet relativiste të lëvizjes së trupave të ngarkuar që lëvizin me shpejtësi të përafërt me atë të dritës. Ajo zbatohet në fenomene që lidhen me përshpejtues ngarkesash si dhe me tuba elektronesh në voltazhe dhe korrente të larta.

Elektromagnetizmi përfshin fenomene të tjera elektromagnetike të jetës së përditshme. Për shembull, drita është një fushë elektromagnetike oshiluese që rrezatohet nga thërrmija të ngarkuara në lëvizje. Përveç gravitetit, shumica e forcave të përditshme janë rrjedhojë të forcës elektromagnetike.

Principet e elektromagnetizmit gjejnë aplikime në disiplina të shumta si tek mikrovalët, antenat, makinat elektrike, satelitët e komunikimit, bioelektromagnetika, plazma, kërkimet në përshpejtuesit bërthamorë, fibrat optike,në interferencën dhe kompatibilitetin elektromagnetik, në konvertimin e energjisë elektromekanike, deri tek aplikime teknologjike si radari dhe meteorologjia. Pajisjet elektromagnetike përfshinë transformatorët, çelsat elektrike, radio/TV, telefonin, motori elektrik, linjat e transmisionit, përçuesit e valëve, fibrat optike, dhe lazerin.



Termodinamika dhe mekanika statistike

Termodinamika studjon efektet e ndryshimit të temperaturës, shtypjes, dhe volumit në një sistem fizik në një shkallë makroskopike, si dhe transferimin e energjisë si nxehtësia Historikisht, termodinamika u zhvillua për të rritur efiçencën e motorëve me avull të hershëm.

Pika fillestare për trajtimin termodinamik te një problemi janë ligjet e termodinamikës, të cilat postulojnë që energjia mund të shkëmbehet midis sistemeve fizike si nxehtësi ose punë. Ato postulojnë gjithashtu edhe ekzistencën e një madhësie të quajtur entropi, e cila mund të përcaktohet për çdo sistem. Në termodinamikë, bashkëveprimet midis ansambleve të mbëdha të objekteve studjohen dhe kategorizohen. Rëndesi të madhe për këtë mbajnë konceptet e sistemit dhe e mjedisit rrethues. Një sistem përbehet nga thermija, lëvizja mesatare e të cilave përcakton vetitë e tij, të cilat janë të lidhura me njëra tjetrën nëpërmjet ekuacioneve të gjëndjes. Vetitë mund të kombinohen për të shprehur energjinë e brëndshme dhe potencialin termodinamik, të cilat janë shumë të vlefshme për përcaktimin e konditave për ekuilibrin dhe proçeset spontane.

Mekanika statistike analizon sisteme makroskopike duke aplikuar parime statistikore në përbërësit e tyre mikroskopike. Ajo jep një mënyrë për lidhjen e vetive mikroskopike të atomeve dhe molekulave individuale me vetitë makroskopike të të gjithë materialit që mund të observohen në jetën e përditshme. Termodinamika mund të shpjegohet si një rezultat i natyrshëm i statistikës dhe mekanikës (klasike dhe kuantike) në një nivel mikroskopik. <!—Në vecanti, mund të përdoret për llogaritjen e madhësive termodinamike të vetive të materialeve nga analizat spektroskopike të molekulave individuale.--> Në këtë mënyrë, ligjet e gazeve mund të derivohen , nga supozimi se gazi është një koleksion thërrmijash inidviduale, të cilat mund të trajtohen si sfera të ngurta me masë. Nga ana tjetër, nëqoftëse këto thërrmija individuale kanë një ngarkesë elektrike, atëhere përshpejtimi individual i këtyre thërrmijave do të shkaktojë emitimin e dritës. Ishin këto fakte të marra në konsiderate ato që çuan Maks Plankun të formulonte ligjin e rrezatimit të trupit të zi, vetem duke supozuar qe spektri i rrezatimit te emituar nga keto thermija nuk eshte constant ne lidhje me frekuencen, por eshte i kuantizuar.


Relativiteti

Relativiteti është një përgjithësim i mekanikes klasike që përshkruan objekte masive ose objekte që lëvizin me shpejtësi shumë të mbëdha, ose sisteme shumë masive. Ai përfshin relativitetin special dhe të përgjithshëm.

Teoria e relativitetit special u propozua më 1905 nga Albert Ajnshtajni në artikullin e tij "Mbi Elektrodinamikën e trupave në lëvizje". Titulli i artikullit i referohet faktit se relativiteti special zgjidh problemin midis ekuacioneve të Maksuellit dhe mekanikes klasike. Teoria është e bazuar mbi dy postulate: (1) forma matematike e ligjeve fizike është invariante në të gjitha sistemet inerciale; dhe (2) shpejtësia e dritës në boshllëk është konstante dhe e pavarur nga burimi i vëzhguesit. Në mënyrë që këto dy postulate mos kundështojnë njëra tjetrën kërkohet që hapësira dhe koha të unifikohen në fabrikën e hapesirë-kohës e cila varet në llojin e sistemit.

Relativitei special jep një sërë rezultatesh të habitshme që duket sikur shkojnë kundër intuitës, megjithatë të gjitha këto parashikime janë të verifikuara eksperimentalisht.Ai hedh poshte nocionet absolute të hapësirës dhe kohës duke pohuar se distanca dhe koha varen tek vëzhguesi, koha dhe hapësira perceptohen në mënyrë të ndryshme, në varësi të vëzhguesit. Teoria nxjerr në perfundimin se ndryshimi tek masa, dimensionet, dhe koha shoqërohen me ndryshimet e shpejtësisë së trupit. Ajo gjithashtu jep edhe ekuivalencën e lëndës me energjinë, siç jepet nga formula e ekuivalencës së masës me energjinë E = mc2, ku c është shpejtesia e dritës në boshllëk. Relativiteti special dhe relativiteti Galilean i mekanikës Njutoniane bien dakort kur shpejtësitë e trupave janë të vogla në krahasim me atë të dritës. Relativiteti special nuk e përshkruan gravitacionin; megjithatë duhet theksuar se ai mund të pershkruajë levizje të nxituara në mungesë të gravitetit.

Relativiteti i përgjithshëm është teoria gjeometrike e gravitacionit e publikuar nga Albert Ajnshtajni në 1915/16. Ajo unifikon relativitetin special, ligjin universal të gravitetit të Njutonit, duke futur idenë se gravitacioni mund të përshkruhet nga kurbatura e hapësirës dhe kohës. Në relativitetin e përgjithshëm, kurbatura e hapësirë-kohës prodhohet nga energjia e lëndës dhe rrezatimit. Relativiteti i përgjithshëm ndryshon nga metrikat e teorive të gravitacionit nga përdorimi i ekuacionet e fushës të Ajnshtajnit të cilat lidhin përmbajtjen e hapësirë-kohës me vete hapësirë-kohën. Invarianca lokale e Lorencit kërkon që manifoldi në RP të jetë 4-dimensional dhe Lorencian në vend të atij Rimanian. Për më tepër, parimi i kovariancës së përgjithshme e bën të domosdoshme përdorimin e analizës tensoriale.

Suksesi i pare i relativitetit të përgjithshëm qe në shpjegimin e preçesionit anormal të perihelionit të Mërkurit. Në 1919, Artur Edington lajmëroi që vëzhgimi i një ylli pranë eklipsit diellor konfirmoi parashikimet e relativitetit të përgjithshëm se trupat masivë mund të përkulin dritën. Që atëhere, shumë observime dhe eksperimente kanë konfirmuar shumë nga parashikimet e relativitetit të përgjithshëm, përfshirë bymimi kohor gravitacional, zhvendosja në të kuqe e gjatësisë valore të dritës, vonesën e sinjalit, dhe rrezatimin gravitacional. Për më tepër, vëzhgime të shumta në kohën e sotme interpretohen si nje afirmim pozitiv i një nga parashikimeve më të çuditshme dhe ekzotike të relativitetit të përgjithshëm, ekzistencës së vrimave të zeza.





Mekanika kuantike

Mekanika kuantike është dega e fizikës që trajton sistemet atomike dhe nënatomike si dhe bashkëveprimin e tyre me rrezatimin në terma të madhësive të observueshme. Ajo bazohet mbi faktin që të gjitha format e energjisë lëshohen në njësi diskrete të quajtura "kuante". Duhet theksuar se, teoria kuantike lejon vetëm përdorimin e llogaritjeve probabilistike ose statistike mbi tiparet e thërrmijave nënatomike, të dhëna nëpërmjet funksionit valor. Ekuacioni i Shrodingerit në mekanikën kuantike luan rolin analog që ligjet e Njutonit dhe ligji i konservimit të energjisë luajnë në mekanikën klasike — pra, ai parashikon sjelljen e sistemeve dinamike në të ardhmen— ky funksion është një ekuacion vale i dhënë në terma të funksionit valor i cili parashikon në një mënyrë analitike dhe preçise probabilitetin e ngjarjeve dhe rezultateve.

Sipas teorive të vjetra të fizikës klasike, energjia trajtohet si një fenomen i vazhdueshëm, kurse lënda mendohet si diçka që zë një vend në hapësire dhe lëviz në mënyrë të vazhdueshme. Sipas teorisë kuantike, energjia emetohet dhe absorbohet në njësi të vogla, diskrete. Një copë individuale ose paketë energjie, quhet një kuant (shumës. kuante), kështu që në disa raste ajo sillet tamam si një grimcë lënde; të gjitha thërrmijat shfaqin veti valore kur janë në lëvizje kështu që në mekanikën kuantike lënda nuk mendohet si e lokalizuar në një vend por si e shpërndarë në një farë mënyre.Për shembull, drita, ose rrezatimi elektromagnetik, që lëshohet ose absorbohet nga një atom ka vetëm frekuenca (ose gjatësi valësh) të caktuara, siç mund të shihet nga vijat spektrale që i korrespondojnë elementit të atij atomi. Teoria kuantike tregon se keto frekuenca i korrespondojnë energjive të përcaktuara të kuanteve të dritës, ose fotoneve, kjo del nga fakti qe elektronet në një atom lejohen të marrin vetem vlera të caktuara të energjisë, ose e thënë ndryshe elektronet mund të ekzistojne vetëm në nivele të caktuara energjitike, një kuant energjie emetohet ose absorbohet kur frekuenca është në proporcion të drejtë me diferencën e energjisë me dy niveleve.

Formalizmi i mekanikes kuantike u zhvillua gjatë 1920-ve. Në 1924, Luiz de Brojli propozoi se valët dritore nuk janë të vetmet të cilat shfaqin një karaker dual, pra vala sillet si thërmije siç ndodh në efektin fotoelektrik dhe në spektrat atomike, edhe thërrmijat grimcore shfaqin dukuri valore. Sugjerimi i de Brojlit dha dy formulime të ndryshme të mekanikës kuantike. Mekanika valore e Ervin Shrodingerit (1926) përfshin përdorimin e një koncepti matematik, funksionit valor, i cili është i lidhur me probabilitetin e gjëndjes së një thërrmije në një pikë të hapësirës. Mekanika e matricave e Uerner Hajzenbergut (1925) nuk e përmend fare konceptin e funksionit valor ose koncepte të ngjashme, e megjithatë ajo u tregua se ishte komplet ekuivalente me teorinë e Shrodingerit. Një zbulim shume i rëndësishëm në teorine kuantike është parimi i papërcaktueshmërisë, i enunciuar për herë të parë nga Hajzenbergu në 1927, i cili vendos një limit absolut teorik në saktësinë që mund të arrihet në disa matje; si rezultat i kesaj, mendimi i disa shkencetareve se gjendja fizike e nje sistemi mund të matet në menyre ekzakte për tu përdorur në parashikimin e gjendjes së sistemit në të ardhmen duhet të braktisej. Mekanika kuantike u kombinua me teorinë e relativitetit në formulimin e P. A. M. Dirakut (1928), e cila, përveç të tjerash, parashikoi ekzistencën e anti-thërrmijave. Zhvillime të tjera të teorisë përfshinë statistikën kuantike, të prezantuar në një formë nga Ajnshtajni dhe S. N. Bose (statistika Bose-Ajnshtajn) dhe në një formë tjetër nga Diraku dhe Enriko Fermi ( statistika Fermi-Dirak); Elektrodinamika kuantike, merret me bashkeveprimin midis thërrmijave të ngarkuara dhe fushës elektromagnetike; përgjithësimi i saj jepet nga, teoria kuantike e fushës; dhe elektronika kuantike. Zbulimi i mekanikës kuantike në fillimin e shekullit të 20-të revolucionoi fizikën, sic shihet mekanika kuantike është një nga degët më themelore në pothuajse të gjitha fushat kontemporare të kerkimit.


PiraTTi

Numri i postimeve: 24
Join date: 14/11/2010
Age: 22
Location: Kosovo

Shiko profilin e anëtarit

Mbrapsht në krye Shko poshtë

Shiko temën e mëparshme Shiko temën pasuese Mbrapsht në krye


Drejtat e ktij Forumit:
Ju nuk mund ti përgjigjeni temave të këtij forumi